大气被视为连续的流体介质,表征大气状态的物理变量在大气连续介质中具有单一的值,这些场变量和他们的导数是空间和时间的连续函数。
牛顿第二定律适用于惯性系,单位质量空气块相对于空间固定坐标系的运动加速度等于所有作用力之和。这里的力是真实作用于大气的力,一般称为“基本力”或“牛顿力”。对于自转的地球而言,还需要考虑视示力,如惯性离心力和地转偏向力。
我们把气块是为一个微立方体,取局地直角坐标系,其体积为
设周围大气作用于B上的压力为
其余方向类似,因此总静压力为三个方向的和:
设气块密度为
万有引力公式:
假设地球平均半径为
分子运动论的观点——任一瞬间分子的不规则运动会引起动量的上下传递。由上向下穿过任一
宏观视角下,不同层间由于速度切边必然存在作用力与反作用力,这种作用力是因流体粘性引起的切变流中的粘滞力。实验表明的是,这种粘滞力与
显而易见的是切应力与
大气是一种低粘性流体,除了在近地面几厘米的薄层内因风的垂直切变很大需要考虑分子粘性外,在其他气层都可忽略该效应。
我将以下几种视示力称为“将非惯性系视为惯性系的补偿”。如果我们站在随球一起转动的坐标系中来观察,发现球是静止的。但向心力是真实存在的,但这是与牛二违背的,因此我们在这个坐标系中引入一个力,其大小与向心力大小相等、方向相反,这个“力”使得坐标系静止。
所以惯性离心力表示为:
当物体相对旋转坐标系运动时,在旋转坐标系中引入的视示力。地球自转角速度
角速度使得球面上的坐标系相对于惯性系旋转,使得身处在旋转系中的我们感觉存在一个力使得运动轨迹发生偏移,实际上这只是非惯性系的“补偿”。
一个不严谨的推导如图:
类似的:
令
其向量形式为:
合并地心引力和惯性离心力的作用,惯性离心力在地心引力相反方向的分量部分抵消了地心引力,气块的重量实际上小于
如果地球是一个正球体,惯性离心力会存在一个平行于地面指向赤道的分力。但地球是近似椭球体,调整后的地平面在指向赤道的方向没有重力分量。